Real-time AI for Enterprise Workloads: the IBM Telum Processor

Dr. Christian Jacobi
IBM Distinguished Engineer
Chief Architect Z Processor Design
You probably used IBM Z today!
The IBM Telum Processor Design

Performance and Scale
- Optimized core
- New cache hierarchy & multi-chip fabric

Embedded Accelerators
- Sort, Compression, Crypto
- AI

Industry-leading Security
- Encrypted Memory
- Improved Trusted Execution Environment

Unmatched Reliability and Availability
- L2 cache SRAM wipe-out error correction & sparing
- 8-DIMM Redundant Array of Memory (RAIM)
Foundation of the Telum chip:
Core and L2 cache

8 cores + L2s per chip
- Optimized for per-core performance

5+ GHz out-of-order pipeline with SMT2
Re-designed branch prediction
- Integrated 1st and 2nd level BTB
- Dynamic BTB entry reconfiguration
- Up to >270k branch target table entries

Private 32MB L2 cache
- 19 cycle load-use latency (~3.8 ns) incl. TLB access
- 4 pipelines for overlapping fetch/store/snoop traffic
Bigger and faster caches:
Horizontal cache persistence

- **Virtual L3 & L4 cache provides 1.5x cache per core**
 - Improved latencies
 - Consistent workload performance gain

- **L2 caches interconnected with dual direction rings**
 - >320 GB/s ring bandwidth

- **On-chip Horizontal Cache Persistence**
 - Virtual on-chip 256MB L3 through L2 cooperation
 - 256MB distributed cache with avg ~12ns latency

- **Across-chip Horizontal Cache Persistence**
 - Virtual 2GB L4 cache across up to 8 chips
Building large scale systems: connecting up to 32 chips

Single Chip
1 chip
256MB cache

Dual Chip Module
2 chips
512MB cache

4-Socket Drawer
8 chips
2GB cache

4-drawer system
32 chips
8GB cache
Building large scale systems: Fabric & interface optimizations

Optimization for latency and bandwidth at every layer
- DCM uses 2 cycle synchronous transfer for minimal latency
- Flat topology within drawer improves latency over z15

Performance and Scale
- Optimized core
- New cache hierarchy & multi-chip fabric

DCM Interface
Enterprise workload performance

Performance and Scale
- Optimized core
- New cache hierarchy & multi-chip fabric

Over 40% per socket performance growth

Performance projection based upon pre-silicon engineering analysis of Telum DCM socket vs z15 processor socket
The IBM Telum Processor Design

Performance and Scale
- Optimized core
- New cache hierarchy & multi-chip fabric

Embedded Accelerators
- Sort, Compression, Crypto
- AI

Industry-leading Security
- Encrypted Memory
- Improved Trusted Execution Environment

Unmatched Reliability and Availability
- L2 cache SRAM wipe-out error correction & sparing
- 8-DIMM Redundant Array of Memory (RAIM)
World-class AI inference platform for enterprise workloads

Business Insights
- Fraud detection
- Customer behavior prediction
- Supply chain optimization

Intelligent Infrastructure
- Workload placement
- Database query plans
- Anomaly detection for security

Maximize AI value with low & consistent latency, enabling real-time application

Minimize security exposure for sensitive data

Inference tasks directly embedded into transaction workload on IBM Z
Embedded AI Inference with central low-latency accelerator

Centralized On-chip accelerator shared by all cores

- Very low and consistent inference latency
- Compute capacity for utilization at scale
- Variety of AI models ranging from traditional ML to RNNs and CNNs
- Security – provide enterprise-grade memory virtualization and protection
- Extensibility with future firmware and hardware updates
Integrated AI Accelerator – integration with Z processor cores

New Neural Network Processing Assist instruction
- Memory-to-memory CISC instruction
- Operates directly on tensor data in user space
- Matrix Multiplication, Convolution, Pooling, Activation Functions

Firmware running on core and AI Accelerator
- Address translation and access check for tensor data
- Prefetching of tensor data into L2 cache
- Coordination of data staging and compute

Enterprise class availability & security
- Virtualization
- Direct memory access with all protection mechanisms
- Error checking and recovery
Integrated AI Accelerator – compute arrays

Aggregate of >6 TFLOPS / chip
- Over 200 TFLOPS on 32-chip system

Matrix Array
- 128 processor tiles with 8-way FP-16 SIMD
- High density multiply-and-accumulate FPUs
- Optimized for matrix multiplication and convolution

Activation Array
- 32 processor tiles with 8-way FP-16/FP-32 SIMD
- Optimized for Activation Functions and complex operations
 - RELU, Sigmoid, tanh, log
 - High-efficiency SoftMax, LSTM & GRU
Integrated AI Accelerator – data movers

On Chip AI Accelerator

Intelligent Prefetcher and Write-Back
- 120+ GB/s read bandwidth to internal scratchpad
- 80+ GB/s store bandwidth
- Multi-zone scratchpad for concurrent data load, execution and write-back

Intelligent Data Mover and Formatter
- 600+ GB/s bandwidth
- Format and prepare data on the fly for compute and write-back

Chip ring interface

Scratchpad

FIFO

Reduced precision systolic array

Complex functions
Seamlessly integrate AI into existing enterprise workload stacks

Build & train anywhere

- Keras
- PyTorch
- SAS
- MATLAB
- Chainer
- mxnet
- TensorFlow
- IBM Deep Learning Compiler
- IBM Snap ML
- ONNX

Deploy on Z

<table>
<thead>
<tr>
<th>Applications</th>
<th>Banking</th>
<th>Retail</th>
<th>Healthcare</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Financial</td>
<td>Hospitality</td>
<td>Government</td>
</tr>
<tr>
<td></td>
<td>Insurance</td>
<td>Transportation</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Languages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Java</td>
</tr>
<tr>
<td>Python</td>
</tr>
<tr>
<td>COBOL</td>
</tr>
<tr>
<td>C/C++</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>App Servers and Platforms</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM CICS</td>
</tr>
<tr>
<td>IBM Cloud Pak for Data</td>
</tr>
<tr>
<td>IBM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>IBM Db2</td>
</tr>
<tr>
<td>IMS</td>
</tr>
<tr>
<td>PostgresSQL</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Operating Systems, Containers</th>
</tr>
</thead>
<tbody>
<tr>
<td>z/OS</td>
</tr>
</tbody>
</table>
AI Accelerator performance

RNN multi-layer model for Credit Card Fraud – proxy model developed with global bank

Performance projection from cycle accurate simulation model on RNN proxy for Credit Card Fraud detection.
Next generation Z processor is optimized to run enterprise workloads with embedded real time AI insights.

Performance and Scale

Security

Availability

Low-latency accelerator for AI

IBM Telum chip

- 7nm Samsung technology
- 530sqmm chip size
- 22.5 Billion transistors
- 5+ GHz base clock frequency